Оптика Френеля

ВОЛНОВАЯ ТЕОРИЯ

Принцип интерференции

Томас Юнг (1773—1829), врач по профессии, человек с весьма разносторонними интересами, известный также как египтолог, стал заниматься теорией света в связи со своими исследованиями человеческого голоса. Эта тема была еще предметом его диссертации по медицине. Его критическому уму теория Ньютона представлялась совершенно неудовлетворительной. Особенно неприемлемым он считал постоянство скорости световых частиц независимо от того, испущены ли они таким крошечным источником, как тлеющий уголек, или таким громадным источником, как Солнце. А более всего представлялась ему неясной и недостаточной ньютоновская теория "приступов", с помощью которой Ньютон пытался объяснить окрашивание тонких пластин. Воспроизведя это явление и поразмыслив над ним, Юнг пришел к гениальной мысли о возможности интерпретации этого явления как наложения света, отраженного от первой поверхности тонкой пластины, и света, прошедшего в пластину, отраженного от второй ее поверхности и вышедшего затем через первую; такое наложение могло привести к ослаблению или к усилению падающего монохроматического света.

Точно не известно, каким образом Юнг пришел к своей идее наложения; возможно, это произошло в результате исследования звуковых биений, при которых наблюдается периодическое усиление и ослабление звука, воспринимаемого ухом. Как бы то ни было, в четырех докладах, представленных Королевскому обществу с 1801 по 1803г., объединенных несколько лет спустя в обобщающей работе "A course of lectures on natural philosophy and the mechanical arts" ("Курс лекций по естественной философии и механическому искусству"), вышедшей в Лондоне в 1807 г., Юнг приводит результаты своих теоретических и экспериментальных исследований. Он несколько раз приводит цитату из XXIV предложения третьей книги "Начал" Ньютона, в которой аномальные приливы, наблюдавшиеся Галлеем на Филиппинском архипелаге, объясняются Ньютоном как результат наложения волн. Исходя из этого отдельного примера, Юнг вводит общий принцип интерференции.

"Представьте себе ряд одинаковых волн, бегущих по поверхности озера с определенной постоянной скоростью и попадающих в узкий канал, ведущий к выходу из озера. Представьте себе далее, что по какой-либо иной аналогичной причине возбуждена другая серия волн той же величины, приходящих к тому же каналу с той же скоростью одновременно с первой системой волн. Ни одна из этих двух систем не нарушит другой, но их действия сложатся: если они подойдут к каналу таким образом, что вершины одной системы волн совпадут с вершинами другой системы, то они вместе образуют совокупность волн большей величины; если же вершины одной системы волн будут расположены в местах провалов другой системы, то они в точности заполнят эти провалы и поверхность воды в канале останется ровной. Так вот, я полагаю, что подобные явления имеют место, когда смешиваются две порции света; и это наложение я называю общим законом интерференции света".

Для получения интерференции нужно, чтобы оба световых луча исходили из одного и того же источника (чтобы у них был совершенно одинаковый период) и после прохождения различного пути попадали в одну и ту же точку и шли там почти параллельно.

Значит, продолжает Юнг, когда две части света общего происхождения попадают в глаз по различным путям, идя почти в одинаковом направлении, луч приобретает максимальную интенсивность при условии, что разность путей лучей равна кратному числу некоторой определенной длины, и имеет минимальную интенсивность в промежуточном случае. Эта характерная длина различна для света различных цветов.

В 1802 г. Юнг подкрепил свой принцип интерференции классическим опытом "с двумя отверстиями", возможно поставленным под влиянием аналогичного опыта Гримальди, который, однако, не привел к открытию интерференции из-за особенностей применявшейся установки. Опыт Юнга общеизвестен: в прозрачном экране кончиком булавки прокалываются два близко расположенных одно к другому отверстия, которые освещаются солнечным светом, проходящим через небольшое отверстие в окне. Два световых конуса, образующихся за непрозрачным экраном, расширяясь благодаря дифракции, частично перекрываются, и в перекрывающейся части, вместо того чтобы давать равномерное увеличение освещенности, образуют серию чередующихся темных и светлых полос. Если одно отверстие закрыто, то полосы исчезают и появляются лишь дифракционные кольца от другого отверстия. Эти полосы исчезают и в том случае, когда оба отверстия освещаются (как это было в опыте Гримальди) непосредственно солнечным светом или искусственным источником света. Привлекая волновую теорию, Юнг очень просто объясняет это явление: темные полосы получаются там, где провалы волн, прошедших через одно отверстие, налагаются на гребни волн, прошедших через другое отверстие, так что их эффекты взаимно компенсируются; светлые каемки получаются там, где два гребня или два провала волн, прошедших через оба отверстия, складываются. Этот опыт позволил Юнгу измерить длину волны для различных цветов: он получил длину волны в 1/36 000 дюйма (0,7 микрона) для красного света и 1/60 000 дюйма (0,42 микрона) для крайнего фиолетового. Это первые в истории физики измерения длины волны света, и, учитывая, что они первые, следует отметить их поразительную точность.

Из своего принципа интерференции Юнг вывел целый ряд разнообразных следствий. Он рассмотрел явления окрашивания тонких слоев и объяснил их вплоть до мельчайших деталей по существу так, как это делается сейчас в курсах физики; он вывел эмпирические законы, найденные Ньютоном, и, считая неизменной частоту света заданного цвета, объяснил уплотнение колец в опыте Ньютона при замене воздушной прослойки между линзами водой уменьшением скорости света в более преломляющей среде. Тем самым гипотеза Ферма и Гюйгенса получила свое первое экспериментальное подтверждение.

Интересно заметить, что Юнгу принадлежит термин "физическая оптика", применяемый для обозначения исследований "...источников света, скорости его распространения, его прерывания и затухания, его расщепления на различные цвета, влияния на него различной плотности атмосферы, метеорологических явлений, относящихся к свету, особенных свойств некоторых веществ по отношению к свету".

Работы Юнга, представляющие собой наиболее существенный вклад в теорию оптических явлений со времен Ньютона, были восприняты физиками того времени с недоверием, а в Англии они подвергались даже грубым насмешкам. Объяснялось это отчасти тем, что Юнг пытался применять принцип интерференции и к явлениям явно не интерференционным, отчасти некоторой неясностью изложения, которая чувствуется и сейчас и которая должна была еще больше чувствоваться в те времена, и отчасти, как упрекал Юнга впоследствии Лаплас, тем, что Юнг иногда удовлетворялся недостаточно строгими, а порой поверхностными математическими доказательствами.


Поляризация света


Ранее говорилось об открытом Гюйгенсом явлении, объяснения которого, как он искренне сам заявил, он дать не смог. Луч света, прошедший сквозь кристалл исландского шпата, приобретает какое-то особое свойство, благодаря которому он, попадая на второй кристалл исландского шпата с главным сечением, параллельным первому, уже испытывает не двойное лучепреломление, а обычное. Если же этот второй кристалл шпата повернуть, то вновь возникнет двойное лучепреломление, но интенсивность обоих преломленных лучей будет зависеть от угла поворота.

В первые годы XIX столетия исследованием этого явления занялся французский военный инженер Этьенн Малюс (1775—1812), который в 1808 г. обнаружил, что свет, отраженный от воды под углом 52°45', обладает тем же свойством, что и свет, прошедший через кристалл исландского шпата, причем отражающая поверхность как бы является главным сечением кристалла.

Это явление наблюдалось и при отражении от любого другого вещества, но требуемый угол падения менялся в зависимости от показателя преломления вещества. В случае отражения от металлической поверхности картина получалась более сложной.

В следующей работе, написанной в том же году, Малюс, экспериментируя с полярископом, описываемым до сих пор в учебниках физики под названием "полярископа Био" и состоящим из двух зеркал, расположенных под углом, приходит к формулировке известного закона, носящего его имя.

Как раз в то время, когда Малюс проводил свои исследования, Парижская Академия наук объявила конкурс (1808 г.) на лучшую математическую теорию двойного лучепреломления, подтверждаемую опытом. Малюс принял участие в этом конкурсе и получил премию за свой имеющий историческое значение труд "Theorie de la double refraction de la lumiere dans les substances cristalisees" ("Теория двойного лучепреломления света в кристаллических веществах"), опубликованный в 1810 г. В нем Малюс описывает свое открытие и найденный им закон; для его объяснения он принимает точку зрения Ньютона "не в качестве неоспоримой истины", а лишь как гипотезу, позволяющую рассчитать явление. Объявив себя, таким образом, сторонником корпускулярной теории света, Малюс пытается найти объяснение в полярности световых корпускул, о которой бегло упоминает Ньютон в 26 вопросе. В естественном свете, как он теперь называется, корпускулы света ориентированы по всем направлениям, при прохождении же двоякопреломляющего кристалла или при отражении они ориентируются определенным образом. Свет, в котором корпускулы имеют определенную ориентацию, Малюс назвал поляризованным; это слово и его производные остались в физике и до наших дней.

Исследования поляризации света, начатые Малюсом, продолжили во Франции Био и Араго, а в Англии Брюстер, который в свое время был больше известен благодаря изобретенному им калейдоскопу (1817 г.), нежели важным открытиям в области кристаллооптики. В 1811 г. Малюс, Био и Брюстер независимо открыли, что отраженный луч также частично поляризован.

В 1815 г. Дэвид Брюстер (1781—1868) дополнил эти исследования открытием закона, носящего его имя: отраженный луч полностью поляризован (а соответствующий преломленный луч имеет максимальную поляризацию), когда отраженный и преломленный лучи перпендикулярны друг другу.

Доминик Франсуа Араго (1786—1853) установил поляризацию света лунного серпа, комет, радуги, еще раз подтвердив тем самым, что все это отраженный солнечный свет. Поляризованным является также свет, испускаемый под косыми углами раскаленными жидкими и твердыми телами, что доказывает, что этот свет исходит из внутренних слоев вещества и преломляется, выходя наружу. Но наиболее важным и наиболее известным открытием Араго является обнаруженная им в 1811 г. хроматическая поляризация. Помещая на пути поляризованного луча пластинку из горного хрусталя толщиной 6 мм и наблюдая прошедший сквозь нее луч через кристалл шпата, Араго получил два изображения, окрашенных в дополнительные цвета. Окраска обоих изображений при повороте пластинки не менялась, но менялась при повороте кристалла шпата, причем оба цвета все время оставались дополнительными. Так, если одно из изображений было сначала красным при определенном положении кристалла шпата, то при его повороте оно становилось последовательно оранжевым, желтым, зеленым и т. д. Био повторил этот опыт в 1812 г. и показал, что угол поворота кристалла шпата, необходимый для получения определенного цвета изображения, пропорционален толщине пластинки. Кроме того, в 1815 г. Био обнаружил явление круговой поляризации и наличие правовращающих и левовращающих веществ.

В том же году Био установил, что турмалин обладает двойным лучепреломлением и свойством поглощать обыкновенный луч и пропускать лишь необыкновенный. На этом явлении были основаны сконструированные Гершелем в 1820 г. известные "турмалиновые щипцы"— простейший поляризационный прибор, оставшийся неизменным до наших дней. Наибольшим неудобством этого прибора было окрашивание луча. Этого недостатка лишена призма, предложенная в 1820 г. английским физиком Уильямом Николем (1768—1851). Призма Николя также пропускает только необыкновенный луч. Комбинация двух таких "николей", как теперь называются эти двоякопреломляющие призмы, в один прибор, имеющий и сейчас широчайшее применение, была осуществлена самим Николем в 1839 г.

Таким образом,основные явления поляризации света, представляющие собой обширный и интересный раздел физики, включаемый теперь во все учебники, были открыты французскими физиками за семь лет, с 1808 по 1815 г. И поскольку открытие столь интересных явлений происходило под флагом корпускулярной теории, казалось, что она получает в этих явлениях еще одно подтверждение.


Волновая теория Френеля


Этот прилив жизненных сил в корпускулярную теорию длился недолго. Молодой дорожный инженер Огюстен Френель (1788—1827), присоединившийся волонтером к роялистским войскам, которые должны были преградить дорогу Наполеону во время его возвращения с острова Эльба, в период Ста дней был уволен со службы и вынужден был удалиться в Матье, близ Казна. Молодой инженер, почти не сведущий в оптике, находясь в Казне, посвятил себя исследованию дифракции, имея в своем распоряжении лишь случайное и примитивное экспериментальное оборудование. Два мемуара, представленных им 15 октября 1815 г. Парижской Академии наук, были первым результатом этих трудов. Араго, которому вместе с Пуансо поручили рассмотреть их и прореферировать, нашел их настолько интересными, что добился для Френеля, который с наступлением реставрации был вновь принят на службу, приглашения в Париж для повторения своих опытов в более благоприятных условиях.

Френель начал исследовать тени, отбрасываемые небольшими препятствиями на пути лучей, и обнаружил образование полос не только снаружи, но и внутри тени, что до него уже наблюдал Гримальди и о чем умолчал Ньютон. Исследование тени, образуемой тонкой проволокой, привело Френеля ко вторичному открытию принципа интерференции. Его поразило, что, если край экрана был расположен вдоль одной стороны проволоки, внутренние полосы исчезали. Итак, подумал он сразу, раз прерывание света от одного из краев проволоки приводит к исчезновению внутренних полос, значит, для их образования необходимо совместное действие лучей, приходящих с обеих сторон проволоки."Внутренние каемки не могут образовываться от простого смешения этих лучей, потому что каждая сторона проволоки в отдельности направляет в тень только непрерывный поток света; следовательно, каемки образуются в результате перекрещивания этих лучей. Этот вывод, который представляет собой, так сказать, перевод явления на понятный язык, полностью противоречит гипотезе Ньютона и подтверждает теорию колебаний. Легко можно догадаться, что колебания двух лучей, которые скрещиваются под очень малым углом, могут действовать в противоположные стороны в тех случаях, когда узлы одних волн соответствуют пучностям других".

Идея Френеля ясна из этой цитаты, хотя ее формулировка недостаточно точна и была впоследствии исправлена самим Френелем: колебания ослабляются, когда "узлы разрежения" одной системы лучей совпадают с "узлами уплотнения" другой системы, и усиливаются, когда оба движения находятся "в гармонии". В общем, приняв принцип интерференции, Френель повторяет путь Юнга. В частности, он дает объяснение окрашиванию тонких слоев.

В Париже Френель узнал об опытах Юнга с двумя отверстиями, которые, по его мнению, были вполне подходящими для иллюстрации волновой природы света. Тем не менее для исключения всякой возможности истолкования этого явления как действия краев отверстий Френель придумал известный "опыт с двумя зеркалами", о котором он сообщает в 1816 г., а затем в 1819 г. "опыт с бипризмой", ставший с тех пор классическим методом демонстрации принципа интерференции.

В 1837 г. Хэмфри Ллойд показал, что оптическая интерференция может быть получена и с помощью одного зеркала, если заставить интерферировать прямой свет и отраженный от зеркала. Однако существенный прогресс был достигнут лишь в 1856 г., когда Жюль Жамен (1818—1886), развивая исследования Брюстера 1831 г., построил свой известный "интерференционный рефрактометр", образуемый двумя параллельными стеклянными пластинками, которые в 1867 г. Квинке предложил серебрить с внешней стороны. Как известно, в этом приборе интерференция происходит за счет разности оптических путей.

Добавим здесь, кстати, что именно опыт с двумя зеркалами подсказал в 1833 г. Джону Гершелю (1792—1871) идею аналогичной установки для исследования интерференции акустических волн, в которой использовалась двойная трубка; эта установка была усовершенствована в 1866 г. Георгом Квинке (1834—1924), в честь которого она получила название, дошедшее до настоящего времени. Применение манометрического пламени для объективных наблюдений было предложено в 1864 г. Карлом Рудольфом Кенигом (1832—1901), заменившим резиновые трубки Квинке металлическими трубками, которые могли удлиняться, как в тромбоне.

Вернемся к работам Френеля. Взяв на вооружение принцип интерференции, волновая теория располагала теперь тремя принципами: принципом элементарных волн, принципом огибающей и принципом интерференции. Это были три отдельных принципа, которые Френель гениально решил слить воедино. Таким образом, для Френеля огибающая волн не просто геометрическое понятие, как для Гюйгенса. В произвольной точке волны полный эффект представляет собой алгебраическую сумму импульсов, создаваемых каждой элементарной волной; полная сумма всех этих импульсов, складывающихся согласно принципу интерференции, может быть, в частности, равна нулю. Френель произвел такой расчет, хотя и не вполне строгим способом, и пришел к выводу, что влияние сферической волны во внешней точке сводится к влиянию небольшого сегмента волны, центр которой находится на линии, соединяющей источник света с освещенной точкой; остальная часть волны дает в  сумме нулевой эффект в рассматриваемой точке.

Тем самым было преодолено препятствие, стоявшее в течение веков на пути утверждения волновой теории — согласование прямолинейного распространения света с его волновым механизмом. Каждая точка вне волны получает свет лишь от очень небольшой ее области, прилегающей к точке, ближайшей к рассматриваемой; все происходит так, как если бы свет распространялся по прямой линии от источника к освещенной точке. Действительно, волны должны огибать препятствия, но это утверждение не следует понимать грубо качественно, поскольку отклонение волны за препятствием зависит от длины волны. Зная длину волны, можно рассчитать, как и насколько отклонится свет за препятствием. Рассматривая явление дифракции, Френель произвел такой расчет, и его результаты прекрасно совпали с экспериментальными данными. Первые статьи Френеля о дифракции вследствие их недостаточной математической строгости были неодобрительно встречены Лапласом, Пуассоном и Био, утонченными аналитиками, для которых математическая строгость была культом.

После нескольких лет перерыва в исследованиях Френель вновь излагает свою теорию в обширном мемуаре о дифракции, представленном в 1818 г. на конкурс Парижской Академии наук. Этот мемуар рассматривался комиссией, состоявшей из Лапласа, Био, Пуассона, Араго и Гей-Люссака. Трое первых были убежденные ньютонианцы, Араго был настроен в пользу Френеля, а Гей-Люссак, по существу, не был компетентен в рассматриваемом вопросе, но был известен своей честностью. Пуассон заметил, что из теории Френеля можно вывести следствия, находящиеся как будто в явном противоречии со здравым смыслом, поскольку из расчета следует, что в центре геометрической тени непрозрачного диска надлежащих размеров должно наблюдаться светлое пятно, а в центре конической проекции небольшого круглого отверстия на определенном легко вычисляемом расстоянии должно наблюдаться темное пятно. Комиссия предложила Френелю доказать экспериментально выводы из его теории, и Френель блестяще это выполнил, доказав, что "здравый смысл" в этом случае ошибается. После этого по единодушному предложению комиссии Академия наук присудила ему премию, а в 1823 г. он был избран ее членом.

После установления теории дифракции Френель перешел к исследованию явления поляризации. Корпускулярная теория, вынужденная для интерпретации многочисленных явлений, открытых в первое пятнадцатилетие XIX века, вводить одну за другой различные гипотезы, совершенно необоснованные и порой противоречивые, к этому времени невообразимо усложнилась. В своем опыте с двумя зеркалами, расположенными под углом, Френель получил с помощью одного источника света два мнимых источника, всегда строго когерентных. Он попытался также видоизменить этот прибор, используя два луча, получающихся при двойном лучепреломлении одного луча, и компенсируя надлежащим образом разность оптических путей обоих лучей. Однако ему никак не удавалось добиться интерференции этих поляризованных лучей.

В сотрудничестве с Араго он продолжал экспериментально исследовать возможность интерференции поляризованного света, и им удалось установить, что два луча света, поляризованные в параллельных плоскостях, всегда интерферируют, а два луча света, поляризованные перпендикулярно, никогда не интерферируют (в том смысле, что не гасят друг друга). Как объяснить этот факт? Как объяснить все остальные явления поляризации, не имеющие никакой аналогии в акустике?

Тот факт, что луч, поляризованный при отражении, обладает двумя плоскостями симметрии, ортогональными друг другу и проходящими через луч, мог натолкнуть на мысль о том, что колебания эфира происходят в этих плоскостях перпендикулярно направлению луча. Эта идея была высказана Френелю Ампером еще в 1815 г., но Френель не воспользовался ею. Юнгу, едва лишь он узнал об опытах Френеля и Араго с поляризованным светом,, тоже пришла мысль о поперечных колебаниях, однако то ли из-за неуверенности, то ли из благоразумия он говорил об этом как о "воображаемом поперечном движении", т. е. как о понятии чисто фантастическом,— столь бессмысленными с механической точки зрения представлялись ученым того времени поперечные колебания эфира.

После того как в течение многих лет Френель пользовался языком теории продольных колебаний, в 1821 г. он, не найдя другого пути интерпретации поляризационных явлений, решился принять теорию поперечности колебаний. В том же году он пишет: "Лишь несколько месяцев тому назад, размышляя с большим вниманием по этому поводу, я признал весьма вероятным, что колебательные движения световых волн осуществляются только в плоскости волн как для простого, так и для поляризованного света... Я постараюсь показать, что гипотеза, которую я представляю, не содержит ничего физически невозможного и что она уже может служить для объяснения основных свойств поляризованного света…".

То, что эта гипотеза может объяснить основные свойства поляризованного света, было детально показано Френелем; что же касается того, что в этой гипотезе нет ничего физически невозможного,— это уже совсем другое дело. Из поперечности колебаний следовало, что эфир, будучи тончайшим и невесомым флюидом, должен одновременно быть наитвердейшим телом, тверже стали, ибо только твердые тела передают поперечные колебания. Эта гипотеза представлялась исключительно смелой, почти безумной. Араго, физик явно не склонный к предрассудкам, тот самый Араго, который был другом, советчиком и защитником Френеля во всех случаях, не нашел возможным разделить ответственность за эту странную гипотезу и отказался подписать представленную Френелем статью.

Таким образом, с 1821 г. Френель продолжал свой путь в одиночку, и это был путь, полный побед. Гипотеза о поперечности колебаний позволила ему построить свою механическую модель света. Основой ее является эфир, заполняющий всю Вселенную и пронизывающий все тела, причем эти тела вызывают изменение механических характеристик эфира. Из-за этих изменений, когда упругая волна переходит из свободного эфира в эфир, содержащийся в веществе, на поверхности раздела часть волны поворачивает обратно, а часть проникает в вещество. Тем самым было дано механическое объяснение явления частичного отражения, остававшегося в течение нескольких веков тайной для физиков. Выведенные Френелем формулы, носящие теперь его имя, сохранили свой вид до наших дней. Скорость распространения колебаний в среде зависит от длины волны, а при заданной длине волны тем меньше, чем более преломляющей является среда. Отсюда вытекают как следствие преломление света и его дисперсия. В изотропных средах волны имеют сферическую форму с центром в точечном источнике излучения; в анизотропных средах форма волны описывается, вообще говоря, поверхностью четвертого порядка. В теории Френеля все сложнейшие явления поляризации интерпретируются в удивительном согласии с экспериментальными данными и предстают как частные случаи общего закона сложения и разложения скоростей.

Исследование двойного лучепреломления повлекло за собой анализ сил, возникающих в упругой среде благодаря малым молекулярным перемещениям. В результате этого исследования Френель сформулировал ряд теорем, которые, как заметил Эмиль Верде (1824—1866), редактор трудов Френеля, легли в основу новой отрасли науки — общей теории упругости, развитой вскоре после появления трудов Френеля работами Коши, Грина, Пуассона и Ламе.

В период с 1815 по 1823 г. благодаря Френелю было воздвигнуто величественное здание волновой оптики, которое, как, впрочем, все творения человека, не было свободно от недостатков. Молодой инженер подходил к различным проблемам и разрешал их, полагаясь больше на свою могучую интуицию, нежели на математический расчет. Поэтому иной раз он допускал ошибки, а чаще всего лишь давал схему решения. Но все же его идеи, несмотря на противодействие старых физиков, очень быстро увлекли молодежь, восхищенную наглядностью и простотой теоретической модели. Джордж; Эйри (1801—1892), Джон Гершель (1792—1871), Франц Нейман (1798— 1895) и многие другие физики упорядочили и скорректировали теорию Френеля и вывели из нее ряд следствий.

С 1823 г. Френель, уже больной, начинает по долгу службы заниматься исследованием маяков (университетской кафедры ему не удалось получить). Эти исследования, которые он проводил до самой смерти, наступившей в 1827 г., привели его к изобретению ступенчатых линз и существенному усовершенствованию  мигающих  маяков.

 

 


 
 
 
Rambler's Top100

Веб-студия Православные.Ру