Мутации и новые гены. Можно ли утверждать, что они служат материалом макроэволюции?

Эволюционисты-теоретики тоже задаются этим вопросом. Вот вполне наукообразно изложенный обзор на одном из атеистических сайтов, который посвящен разбору аргументов креационистов [42]. Там на этот счет указывается, что, дескать, "темпы реальной эволюции зависят не от темпов размножения вида, а от его отношений со средой, от мощи экологических ограничений, накладываемых на вид другими членами и факторами экосистемы". И дана в том числе ссылка [5], на теоретический труд двух авторов, по крайней мере, о первом из которых мне точно известно, что он никакого отношения ни к молекулярной биологии, ни к мутациям не имеет. И к генам — тоже.

Далее идут рассуждения, что "хорошо приспособленный вид в стабильных и стабильно непостоянных условиях может существенно не меняться неограниченно долго, а отношения бактерий со средой едва ли принципиально изменились с протерозоя до современности. Если же условия изменятся, то темпы трансформации определяются в первую очередь интенсивностью естественного отбора, то есть тем, насколько выживание или гибель особи зависит от ее индивидуальных наследственных особенностей, а не является результатом простой случайности. Гибель бактерий обычно массова и неизбирательна... К тому же, геном бактерий гаплоидный, рекомбинации редки и случайны, и возможности формирования удачных комбинаций генов крайне ограничены, что сильно сокращает поле деятельности отбора"42.

Все это, хотя и кажется наукообразным, на мой взгляд, крайне мутно, запутанно и лежит в области отвлеченных от реальности взаимопротиворечащих эклектико-схоластических рассуждений. Действительно, последнее утверждение насчет редкости рекомбинаций (появления новых сочетаний генов) у бактерий, что, де, должно снижать темпы их эволюции, и вовсе круто. Авторы забывают про крайне интенсивный обмен между бактериями генетической информацией путем трансформации, конъюгации и трансдукции (см. хотя бы [1]), а также о наличии у них мобильных элементов (транспозонов) [43], и плазмид [1, 2, 6]. Быстрый обмен и перегруппировка информации у бактерий должны даже по логике идти по сравнению с высшими организмами гораздо быстрее (на более быстрое мутирование микроорганизмов указано и в учебных пособиях по биологии [1]). Именно поэтому столь много различных штаммов патогенных бактерий, именно поэтому столь быстро развивается устойчивость к антибиотикам. Аналогичная картина — и у вирусов (вспомним мутации вирусов гриппа).

Если механизмы макроэволюции реальны, то остается все-таки малопонятным, почему до сих пор никто не смог обнаружить в лабораторных условиях возникновение новых типов и родов микроорганизмов.

Но — бактерии бактериями, однако существуют еще и другие типы организмов. Исследованию их "эволюции" на молекулярном уровне посвящена даже специальная дисциплина. Возникает вопрос: может, именно в соответствующих публикациях молекулярных эволюционистов имеется что-нибудь важное о возникновении новых генов и новой генной информации? Необходимо было рассмотреть специальные источники.

4. Современные представления о механизмах возникновения новых генов

В Интернете была обнаружена полная версия весьма свежего обзора (2003 г.; "Nature Review Genetics"), о котором мы уже упоминали40. Он написан группой из трех авторов из двух университетов США и примкнувшим к ним исследователем из АН Китая. Все, включая последнего, — из научных подразделений, изучающих вопросы генетики и/или эволюции (в том числе на молекулярном уровне).

В Сети имеются и еще два обзора по эволюции генов тех же основных авторов из США — более ранний 2002 г.44 и вновь 2003 г.45 (журнал "Genetica", Нидерланды).

Названия указанных работ следующие:"Происхождение новых генов: взгляд на старые и новые представления" ("The origin of new genes: glimpses from young and old") 40, "Распространение в геноме кодирующих участков путем приобретения новых генов" ("Expansion of genome coding regions by acquisition of new genes")44 и "Происхождение новых генов: экспериментальные и расчетные свидетельства" ("Origin of new genes: evidence from experimental and computational analyses")45.

Эти обзоры произвели весьма солидное и благоприятное впечатление. Множество проанализированных источников — свежие (целый ряд — 2002–2003 гг.). Можно надеяться, что все "разложено по полочкам". Похоже, что механизмы образования новых генов разобраны тщательно и, на настоящий момент, полно (вряд ли с 2003 г. что-нибудь существенно изменилось). Все они, конечно, рассматриваются в эволюционном аспекте.

Что понимается в указанных обзорах под "новыми генами" и насколько они отличаются от "старых", мы исследовать не будем — необходимо проанализировать массу конкретных оригинальных статей, которые послужили материалом для обзоров. Хотя даже на поверхностный взгляд по опубликованным в тех обзорах таблицам и видно, что подавляющее большинство упомянутых "новых генов" и "новых белков" являются изоформами (модификациями) "старых" генов и соответствующих им белков, все-таки поверим авторам. Раз они их называют "новыми", пусть таковыми и будут.

Ваш покорный слуга наметил в перспективе рассмотреть данный вопрос в другом обзоре.

Рассмотрим, если Господу угодно будет.

Итак, каковы же известные на современном этапе механизмы образования "новых" генов?

Таких механизмов оказалось семь, однако шесть из них связаны с изменениями и/или умножениями кодирующей информации уже существовавших, "старых" генов. Кратко перечислим их, хотя и будут, конечно, некоторые специальные термины. Отметим, что для каждого механизма в обзоре представлены примеры экспериментальных подтверждений, причем многие — даже для высших эукариот (многоклеточных организмов).

1) Перетасовка экзонов (Exon shuffling). Надо сказать, что гены эукариот состоят из кодирующих (экзоны) и некодирующих (интроны) участков. Последние вырезаются при сплайсинге (конечный этап созревания РНК после считывания с матрицы ДНК). При перетасовке экзонов происходит как бы изменение расположения частей гена по отношению друг к другу и, соответственно, ген может функционировать по-другому. Правда, нередко не совсем по-другому: иной раз получаются мозаичные белки, где разные их части просто перетасованы. Как видим, здесь, вероятно, не появляется ни качественно новых генов, ни качественно новых белков. Этому механизму отводится главная роль [40, 44, 45].

2. Удвоение гена (Gene duplication). Отмечается, что дуплицированный ген может приобретать новые функции, в то время как его исходная копия продолжает выполнять исходные. От себя отметим: наверное, известная амплификация (умножение копий гена, например, резистентности к неблагоприятному фактору) является частным случаем этой дупликации. Снова можно сказать, что идет какое-то изменение или умножение уже имеющегося гена, а не образование совершенно нового.

3. Ретропозиция (Retroposition) или, как указывается, включение дуплицированного гена в новую позицию в геноме путем обратной транскрипции. Здесь нам надо уяснить только, что снова происходит считывание уже имевшейся генной информации с новым типом включения ее в геном.

4. Образование генной вставки путем включения мобильного элемента или транспозона (Mobile element; transposone). Мы уже говорили, что мобильные элементы являются фрагментами ДНК из нескольких генов или некодирующих последовательностей. Они как бы "гуляют" вдоль ДНК или между клетками разных бактерий, встраивая свои мобильные гены на новые места, где те способны работать по-другому. Но это "по-другому" снова не значит, что приобретается абсолютно новая генная информация, возникшая из негенной.

5. Горизонтальный транспорт генов (Lateral gene transfer) — передача генной информации от клетки к клетке. Процесс продемонстрирован для микроорганизмов и растений. В обзоре [40] предполагается, что он может быть важен и для эволюции высших организмов. Понятно, что при передаче генов новые не появляются.

6. Слияние/расщепление генов (Gene fusion/fission). Два смежных гена могут сливаться в единый при транскрипции, через делецию или мутацию трансляционного стоп-кодона, и использовать сигнал терминации транскрипции в расположенном далее гене. Наоборот, единый ген может разделяться на два отдельных гена, хотя механизм этого не ясен. Идентифицирован ряд случаев генного слияния у прокариот; имеются данные и для высших эукариот, в том числе для генов человека.

Здесь мы как будто встречаем формирование новых генов, но вновь ясно, что никакая информация не появляется "из ничего". Происходит считывание в виде единого гена информации сразу с двух генов ("слияние") или в виде нескольких генов с разных частей одного гена ("расщепление"). И тут гены возникают из других кодирующих участков.

Наконец, особо интересующий нас 7-й механизм: возникновение генов de novo, т.е. заново, из ранее некодирующих последовательностей. О нем упомянуто только в одном обзоре из трех названных выше [40], причем в самом конце перечисления. Этому механизму уделены три строчки и сказано, что появление гена de novo явление крайне редкое, что для целого гена оно встречается еще реже и более характерно для частей гена. Правда, далее в обзоре [40] возникновение генов de novo все же немного обсуждается и приведены несколько примеров: один ген дрозофилы (Sdic)46,47 и ген, кодирующий антифризный белок у антарктических полярных рыб48–51. Упоминается также, что по сходному механизму возникают и гены, кодирующие не белки, как подавляющее большинство генов, а специальные, необычные РНК в нейронах головного мозга грызунов52,53.

Для дрозофилы и рыб мы видим, однако, что указанные гены, как предполагают, возникли не просто из какой-то "негенной" последовательности, а из сигнальной или интрона предсуществовавшего гена. Так, ген Sdic плодовой мушки является примером быстрых изменений генной структуры: две его половины сливаются вместе из двух родительских генов. Полагают, что интрон от одного родительского гена трансформируется в последовательность экзона, а прежняя последовательность экзона изменяется в промотор и регулирующие последовательности, приобретая новые функции в жгутиках спермы дрозофилы 46,47.

Для антифризного белка антарктических рыб отмечено, что появление участка гена из предсуществовавшего интрона гена трипсиногена вероятно40. Исходная последовательность, из которой произошло возникновение части нового гена, кажется весьма короткой (9 нуклеотидов). На родство же с геном трипсиногена указывает существование химерного гена, кодирующего одновременно как тот антифризный белок, так и трипсиноген. В то же время, у арктических рыб ген аналогичного белка, в отличие от антарктических, не имеет последовательности, идентичной гену трипсиногена48–51.

Что же касается примеров с необычными генами, кодирующими специальные РНК52,53, то обращение к первоисточникам продемонстрировало следующее. Эти гены, по-видимому, являются результатом альтернативного сплайсинга (если сказать просто — то см. выше механизм 6), когда между двух экзонов происходит вставка мобильного элемента (транспозона) — конкретно Alu для BC200 РНК (Alu распространен в геноме человека и грызунов)53 или повтора ID для BC1 РНК54. Скажем здесь, что столь известные и популярные ныне мобильные элементы Alu (входящие в состав 5% генов человека 40) сами имеют своим источником генную информацию — они произошли из гена, кодирующего 7SL РНК55.

Понятно, что столь необычные гены, которые кодируют не белки, а РНК, — это не совсем удачный пример механизма макроэволюции генома. Такие гены — слишком "частный случай", и нас должны интересовать другие экспериментально показанные факты происхождения генов de novo, из некодирующих последовательностей. Как было видно выше, во всех трех свежих обзорах молекулярных генетиков-эволюционистов имеется всего два таких примера: ген дрозофилы 40,46,47 и ген антифризного белка антарктических рыб40,48–51, фрагменты которых могут иметь своим источников некодирующие участки — интроны.

Автор представленного вам обзора начал искать и другие аналогичные примеры. Вот лекция on-line по молекулярной биологии зарубежного автора доктора Дугласа Смита, которая называется: "Эволюция генома"56]. Основной упор сделан на дупликации уже предсуществовавших генов. Ни о каком происхождении генной информации из некодирующих участков ДНК не идет и речи, хотя, конечно, в эволюционном развитии геномов доктор Д. Смит не сомневается.

А вот еще обзор 2002 г. по эволюции генома (немецкие авторы)57. Рассмотрено происхождение геномов бактерий. Помимо уже известных нам механизмов, связанных с умножением, перетасовкой, перегруппировкой и передачей уже имеющейся генной информации, упоминается и о возможности генезиса (возникновения) генов de novo, но данных о подобных генах авторы57 не привели.

Наконец, процессы эволюции генома в подробнейших схемах, представленные на одном из зарубежных научных (или учебных) сайтов58. Происхождение из интронной последовательности отсутствует, хотя и приведен механизм, связанный с альтернативным сплайсингом вкупе со вставкой между экзонами мобильного элемента — Alu. Указано, правда, что это — эволюция "нефункциональных" семейств генов. И, кроме того, мы уже знаем, что сам транспозон Alu произошел из кодирующего гена55.

Но вот попалась работа 2003 г. бывших россиян — молекулярных биологов, работающих в США (про одного из них мне известно, что он там с очень давних пор)59. Даже в названии указано, что статья в том числе — о возникновении функциональных (кодирующих) частей генов из ранее интронных последовательностей. Оказалось, однако, что работа во многом теоретическая. Так, разобран механизм возникновение фрагмента новой кодирующей последовательности из примыкающего к экзону интрона при "сдвиге рамки считывания" (см. выше) и приведены четыре примера генов (в том числе генов человека), для которых имеются гомологии фрагментов последовательностей с интронными. Но ссылок на оригинальные работы нет: бывшие россияне просто привели собственные расчеты и прикидки на базе мировых данных для последовательностей ДНК известных генов.

И кажется лишним упоминание о том, что ни один из представленных отставными российскими59 примеров не упоминается в каком-либо другом разобранном нами обзоре по эволюции генома40,44,45,57. По крайней мере, в контексте "интронной гипотезы" (а экспериментальные объекты в соответствующих списках литературы я не сверял).

Тем не менее, вашему покорному слуге все-таки встретился в литературе еще один пример. А именно: образование нового экзона из гена рецептора тиреоидного гормона и гена вируса, когда также предполагают формирование кодирующей последовательности из интрона (статья 1992 г. [60]). Этому явлению, ясно, придается широкий эволюционный смысл60.

Лично мне малопонятно: почему в обзоре 2003 г. [40], когда собирали единичные данные о возникновении новых генов de novo, забыли про работу 1992 г. [60]. И малопонятно, почему бывшие российские в своем труде 2003 г. [59] не привели примеры с генами белков дрозофилы, антарктических рыб и с генами тех необычных РНК нейронов. Странно: ведь каждый даже предположительный пример возникновения генов de novo, из первоначально интронных последовательностей, молекулярным эволюционистам должен быть крайне важен. Впрочем, авторам обзора [40], как конкретным специалистам, виднее: может, результаты работы 1992 г. [60] позже не подтвердились.

Итак, что же показал наш кажущийся вполне репрезентативным и информативным поиск? А он показал, что, несмотря на все развитие молекулярной генетики, два-три гена — это пока, видимо, все, что касается обоснованных предположений конкретно молекулярных генетиков-эволюционистов о возникновении новых генов из ранее некодирующих последовательностей ДНК. Да и то — полагают, что эти гены (скорее, их части) возникают все-таки из частей уже существовавших генов (из интронов). Пример же с появлением гена одной формы РНК нейронов путем альтернативного сплайсинга с участием транспозона Alu сюда не годится: сам Alu исходно произошел из гена55. Правда, остается еще одна форма РНК нейронов, ген которой имеет вставку последовательности ID54. Источник последней мне неизвестен.

Ладно: пусть будет три-четыре примера происхождения из "некодирующего", а не два-три.

 


Страница 2 - 2 из 3
Начало | Пред. | 1 2 3 | След. | КонецВсе

© Все права защищены http://www.portal-slovo.ru

 
 
 
Rambler's Top100

Веб-студия Православные.Ру